
Finding Your
Ideal Cafe

In Manhattan

Team Members:
Elina Shirolkar, Joy Shyu, Joy Tay, Meenu

Selvakesari and Po-Wen Hsu

Background and Problem
Statement
Problem Statement:

- People often face difficulties in finding a cafe, that is in close proximity and meets their
specific requirements, such as price, type, and rating.

- Challenge of not having access to all the necessary information in one place, which can be
time-consuming and frustrating.

- Need for a solution that simplifies the process of finding a perfect study spot.

Potential Use Cases:

Students looking for
study spots

Remote workers
looking for workspace

Tourists looking for
local cafes Social gatherings

Solution and Outcome of the Project
● Solution:

Our goal is to develop a search engine, to help users find the most suitable cafe spot in
Manhattan based on their preferences. For now, our search engine will allow users to filter
for certain criteria such as types, neighborhood, price level, rating, and reviews.

In the future, our target is to connect real-time data and offer more attributes such as ideal
study place, wifi availability, power outlets, crowd level, and loudness to the users.

● Outcome:
This will improve the productivity and studying experience of students who need a
conducive study environment outside their homes.

Data Source Specification and
Procurement Details

1. Data source: Extracting cafe data by using Google Maps Places API

2. Procurement Details: Google offers a free tier for the Places API that includes up to 100,000 API
calls per day. We note that it only allows 20 query results per call. Currently, we will not exceed this
tier’s limits but if we plan to scale this project in the future we may start incurring costs.

Found on Google Paid API Website

Google Places API
Install googlemaps

We query cafe data using latitude and
longitude

As we were only allowed 20 query results
per call, we manually selected 10 locations
that covered majority of Manhattan and
queried them individually before
concatenating all the data points.

The code shown retrieves cafes from the
Upper West Side.

ETL Pipeline and Rationale

● Efficient tool to retrieve data from the API
● Explore and clean the data before

converting it into a pandas dataframe.

● Provides robust support for a wide range of data types
● Ideal for storing and establishing relationships between

multiple datasets
● Provides strong data integrity and consistency, ensuring

the data stored is accurate and reliable

● Handles large-scale data processing
● Has algorithms to build our machine learning

models and perform query matching
● It supports real-time processing, allowing us

to improve our search engine in the future

● Display the output, which connects
to the result of our search engine

1. Python
get/clean data from API 3. Spark

query the attributes

2. PostgreSQL
store and manage data

4. Flask
display the result

Database Schema
● Our database schema is created in two places:

the PostgreSQL database and the PySpark
Dataframe.

● Our data was cleaned in python before inserting it
into our schema

Name varchar

Address varchar

Latitude numeric

Longitude numeric

Types integer

Price Level integer

Rating float

Review integer

Neighborhood varchar

Cafe

O
u
r

S
ch

e
m

a

Designed System Interface
Jupyter Notebook to PostgreSQL

● The code shown takes the dataframe
created from Jupyter Notebook and
stores it in PostgreSQL

Designed System Interface
PostgreSQL to Spark

● We save the data stored in SQL as a csv before
importing it into Spark.

● The code shown displays how we import the
data into Spark after creating a schema.

Designed System Interface
Spark to Flask to HTML

● The code shown takes the inputs from the
flask, processes it using code from Spark and
connects to the html.

Queries
● Users can select the price level, rating level, neighbourhood and key in the type of place they intend to go

to, such as “cafe” or “restaurant”.
● We filtered our stored data to match each of their queries, except for place types
● For place types, we tokenized the “types” column in Spark and created a word vector to allow for similarity

querying. This allowed us to provide the most similar output for each user input.

Tokenize “types” column to a word vector Similarity querying

Interface Output
Our interface output shows a set of attributes that the user can filter for to find the ideal cafe for them in
the 10 neighborhoods we have selected. Users can interact with the platform by selecting from the check
boxes, drop boxes or directly type in keywords and our system will give an output of the top 10 cafes that
are the most similar to the user’s preferences.

Licensing, Data Quality Dimensions,
Scalability & Cost Implications

Licensing:

● Google Places API is a paid service that requires a billing account
with Google Cloud.

● The free tier API includes up to 100,000 API calls per day, but it
limits the default search result to only 20 per query.

Data Quality Dimensions:

● Accuracy & Timeliness: Retrieved data from Google Places API,
giving us direct access to accurate and regularly updated data,
although there may be instances where the data is incomplete.

● Concise & Consistent: Google Places API data is generally
comprehensive and consistent. We only pulled the necessary data,
minimizing data storage and combined it into a uniform dataframe
to ease data manipulation.

● Completeness & Accessibility: To combat the constraints of the
free tier API, we manually selected 10 different locations in
Manhattan and queried them individually before concatenating all
the data points.

Scalability (requirements):

● In the future, we could use
‘next_page_token’ to encode more
data points into our system.

● Use cloud storage which around $12
for 2TB per month depending on the
service provide.

● Include more filters by pulling more
variables from the API

Cost:

Google’s pay-as-you-go plan has a recurring

$200 monthly credit charge

on top of a $300 trial charge. To scale,
we would need to pay the monthly fee
and additional costs based on the
number of calls. (API Pricing)

https://developers.google.com/maps/billing-and-pricing/billing

Performance Evaluation Setup and Results
Optimization of data storage and query performance

● Removed duplicates to avoid unnecessary redundancies and maintain data accuracy.
● Selected appropriate data types, using smaller data types where possible to optimize disk space.
● Utilize RDD caching in Spark to improve query performance, as Spark can access the data more

quickly in memory than if it had to read it from disk each time.

Coverage and Relevance 04 ● Number of cafes and reviews in the
database, the frequency of updates

Satisfaction of users03 ● User satisfaction score from
surveys/application reviews

Velocity and Scalability02 ● The number seconds per query,
stress/capacity test results

Accuracy in retrieving relevant
search results01 ● Precision and recall

EVALUATION CRITERIA METRIC

Storage Costs & Performance
Evaluation
Stored Data Size (on SQL): 27KB
● Relatively small due to Google’s limitations on API calls
● Easy to scale after purchasing Google’s pay-as-you-go API plan
● Plan to update it regularly

To evaluate velocity performance, we used the processing time code chunk to record and minimize the
time taken for each process to load in the system

● API Query Process time: 0.383 seconds (3sf)

● Flask Process time: 0.00753 seconds (3sf)

In the future, we plan to conduct stress/capacity tests to determine scalability, surveys to assess
customer satisfaction and improve the accuracy of our machine learning algorithm.

Conclusion

● Increase the size of database
○ Get a paid plan of Google Places API

● Enable real-time data processing
○ Stream real-time data in Spark to provide up-to-date results to users quickly and

accurately, making for a more seamless and efficient user experience.
● Provide more options for users to narrow their preference

○ Add more attributes for the users to select from
● Enable group search

○ Get multiple users to select their preferences and give back results that fit majority
● Allow users to prioritize their features of their requirement

○ Incorporate a ranking system for users to set preferences that are the most
important or non-negotiable

Recommendations

● Using Google Places API, Python, SQL, Spark, and Flask, we built a search engine that allows
people to easily find the perfect cafe based on their specific needs and preferences.

Team Member Roles and Contributions

Roles Name Contributions

Team Leader Elina Shirolkar API, Flask & Powerpoint Content

Team Member Powen Hsu Debugging Code, Powerpoint Content

Team Member Meenu Selvakesari Spark & Flask, Powerpoint Content

Team Member Joy Tay Data Wrangling, PostgreSQL, Flask &
Powerpoint Content

Team Member Joy Shyu API, PostgreSQL, Flask & Powerpoint
Content

Thank You!
Have a great summer :)

References
● Brown, S. (2023, February 15). Best Cloud Storage Software Options for 2023. CNET. Retrieved from

https://www.cnet.com/tech/services-and-software/best-cloud-storage-software-options/

● Google. (2023, March 29). Google Maps Platform. Retrieved from
https://developers.google.com/maps/documentation/places/web-service/usage-and-billing

● MongoDB. (n.d.). Retrieved from https://www.mongodb.com/pricing

